
pynng Documentation
Release 0.1.0

Cody Piersall

Feb 28, 2019

Contents

1 Installing pynng 3

2 Getting Started 5
2.1 Pynng’s core functionality . 5
2.2 Exceptions in pynng . 16

3 Indices and tables 17

i

ii

pynng Documentation, Release 0.1.0

pynng is Python bindings to Nanomsg Next Generation (nng). It provides a nice Pythonic interface to the nng library.
The goal is that pynng’s interface feels natural enough to use that you don’t think of it as a wrapper, while still exposing
the power of the underlying library. It is installable with pip on all major platforms (Linux, Windows, macOS). It has
first class support for Trio and asyncio, in addition to being able to be used synchronously.

nng is an implementation of the Scalability Protocols; it is the spiritual successor to ZeroMQ. There are a couple of
distributed systems problems that the scalability protocols aim to solve:

1. There are a few communication patterns that are implemented over and over and over and over and over again.
The wheel is continuously reinvented, but no implementations are compatible with each other.

2. Not only is the wheel continuosly reinvented, it is reinvented for every combination of transport and protocol.
A transport is how data gets from one place to another; things like TCP/IP, HTTP, Unix sockets, carrier pigeons.
A protocol is the way that both sides have agreed to communicate with each other (some protocols are ad-hoc,
and some are more formal).

The scalability protols are the basic tools you need to build a distributed system. The following protocols are available:

• pair - simple one-to-one communication. (Pair0, Pair1.)

• request/response - I ask, you answer. (Req0, Rep0)

• pub/sub - subscribers are notified of topics they are interested in. (Pub0, Sub0)

• pipeline, aka push/pull - load balancing. (Push0, Pull0)

• survey - query the state of multiple applications. (Surveyor0, Respondent0)

• bus - messages are sent to all connected sockets (Bus0)

The following transports are available:

• inproc: communication within a single process.

• ipc: communication across processes on a single machine.

• tcp: communication over networks via tcp.

• ws: communication over networks with websockets. (Probably only useful if one end is on a browser.)

• carrier pigeons: communication via World War 1-style carrier pigeons. The latency is pretty high on this one.

These protocols are language-agnostic, and implementations exist for many languages.

This library is available under the MIT License and the source is available on GitHub.

If you need two processes to talk to each other—either locally or remotely—you should be using the scalability
protocols. You never need to open another socket again.

Okay, that was a little hyperbolic. But give pynng a chance; you might like it.

Contents 1

https://github.com/nanomsg/nng
https://trio.readthedocs.io
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://nanomsg.org
https://zeromq.org
https://en.wikipedia.org/wiki/IP_over_Avian_Carriers
https://nanomsg.org/documentation.html#_language_bindings
https://github.com/codypiersall/pynng/blob/master/LICENSE.txt
https://github.com/codypiersall/pynng
http://man7.org/linux/man-pages/man2/socket.2.html

pynng Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Installing pynng

On Linux, Windows, and macOS, a quick

pip3 install pynng

should do the trick. pynng works on Python 3.5+.

3

pynng Documentation, Release 0.1.0

4 Chapter 1. Installing pynng

CHAPTER 2

Getting Started

2.1 Pynng’s core functionality

At the heart of pynng is the pynng.Socket. It takes no positional arguments, and all keyword arguments are
optional. It is the Python version of nng_socket.

2.1.1 The Socket

Note: You should never instantiate a pynng.Socket directly. Rather, you should instantiate one of the subclasses.

class pynng.Socket(*, listen=None, dial=None, **kwargs)
Open a socket with one of the scalability protocols. This should not be instantiated directly; instead, one of its
subclasses should be used. There is one subclass per protocol. The available protocols are:

• Pair0

• Pair1

• Req0 / Rep0

• Pub0 / Sub0

• Push0 / Pull0

• Surveyor0 / Respondent0

• Bus0

The socket initializer receives no positional arguments. It accepts the following keyword arguments, with the
same meaning as the attributes described below: recv_timeout, send_timeout, recv_buffer_size,
send_buffer_size, reconnect_time_min, reconnect_time_max, and name

To talk to another socket, you have to either dial() its address, or listen() for connections. Then you can
send() to send data to the remote sockets or recv() to receive data from the remote sockets. Asynchronous

5

https://nanomsg.github.io/nng/man/tip/nng_socket.5.html

pynng Documentation, Release 0.1.0

versions are available as well, as asend() and arecv(). The supported event loops are asyncio and Trio.
You must ensure that you close() the socket when you are finished with it. Sockets can also be used as a
context manager; this is the preferred way to use them when possible.

Sockets have the following attributes. Generally, you should set these attributes before listen()-ing or
dial()-ing, or by passing them in as keyword arguments when creating the Socket:

• recv_timeout (int): Receive timeout, in ms. If a socket takes longer than the specified time, raises a
pynng.exceptions.Timeout. Corresponds to library option NNG_OPT_RECVTIMEO

• send_timeout (int): Send timeout, in ms. If the message cannot be queued in the specified time, raises a
pynng.exceptions.Timeout. Corresponds to library option NNG_OPT_SENDTIMEO.

• recv_max_size (int): The largest size of a message to receive. Messages larger than this size will be
silently dropped. A size of 0 indicates unlimited size. The default size is 1 MB.

• recv_buffer_size (int): The number of messages that the socket will buffer on receive. Corresponds to
NNG_OPT_RECVBUF.

• send_buffer_size (int): The number of messages that the socket will buffer on send. Corresponds to
NNG_OPT_SENDBUF.

• name (str): The socket name. Corresponds to NNG_OPT_SOCKNAME. This is useful for debugging pur-
poses.

• raw (bool): A boolean, indicating whether the socket is raw or cooked. Returns True if the socket is
raw, else False. This property is read-only. Corresponds to library option NNG_OPT_RAW. For more
information see nng’s documentation.

• protocol (int): Read-only option which returns the 16-bit number of the socket’s protocol.

• protocol_name (str): Read-only option which returns the name of the socket’s protocol.

• peer (int): Returns the peer protocol id for the socket.

• local_address: The SockAddr representing the local address. Corresponds to NNG_OPT_LOCADDR.

• reconnect_time_min (int): The minimum time to wait before attempting reconnects, in ms. Corresponds
to NNG_OPT_RECONNMINT. This can also be overridden on the dialers.

• reconnect_time_max (int): The maximum time to wait before attempting reconnects, in ms. Corresponds
to NNG_OPT_RECONNMAXT. If this is non-zero, then the time between successive connection attempts
will start at the value of reconnect_time_min, and grow exponentially, until it reaches this value.
This option can be set on the socket, or on the dialers associated with the socket.

• recv_fd (int): The receive file descriptor associated with the socket. This is suitable to be passed into poll
functions like select.poll() or select.select(). That is the only thing this file descriptor is
good for; do not attempt to read from or write to it.

• send_fd (int): The sending file descriptor associated with the socket. This is suitable to be passed into poll
functions like select.poll() or select.select(). That is the only thing this file descriptor is
good for; do not attempt to read from or write to it.

await arecv()
The asynchronous version of recv()

await arecv_msg()
Asynchronously receive the Message msg on the socket.

await asend(data)
Asynchronous version of send().

dial(address, *, block=None)
Dial the specified address.

6 Chapter 2. Getting Started

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://trio.readthedocs.io
https://nanomsg.github.io/nng/man/v1.0.1/nng.7.html#raw_mode
https://docs.python.org/3/library/select.html#select.poll
https://docs.python.org/3/library/select.html#select.select
https://docs.python.org/3/library/select.html#select.poll
https://docs.python.org/3/library/select.html#select.select

pynng Documentation, Release 0.1.0

Parameters

• address – The address to dial.

• block – Whether to block or not. There are three possible values this can take:

1. If True, a blocking dial is attempted. If it fails for any reason, the dial fails and an
exception is raised.

2. If False, a non-blocking dial is started. The dial is retried periodically in the back-
ground until it is successful.

3. (Default behavior): If None, a blocking dial is first attempted. If it fails an exception
is logged (using the Python logging module), then a non-blocking dial is done.

listen(address, flags=0)
Listen at specified address.

listener and flags usually do not need to be given.

new_context()
Return a new Context for this socket.

recv(block=True)
Receive data on the socket. If the request times out the exception pynng.Timeout is raised. If the
socket cannot perform that operation (e.g., a Pub0, which can only send()), the exception pynng.
NotSupported is raised.

Parameters block – If block is True (the default), the function will not return until the opera-
tion is completed or times out. If block is False, the function will return data immediately. If
no data is ready on the socket, the function will raise pynng.TryAgain.

recv_msg(block=True)
Receive a Message on the socket.

send(data)
Sends data (either bytes or bytearray) on socket.

Feel free to peruse the examples online, or ask in the gitter channel.

Available Protocols

class pynng.Pair0(**kwargs)
A socket for bidrectional, one-to-one communication, with a single partner. The Python version of nng_pair0.

This is the most basic type of socket. It accepts the same keyword arguments as Socket and also has the same
attributes.

This demonstrates the synchronous API:

from pynng import Pair0
address = 'tcp://127.0.0.1:13131'
in real code you should also pass recv_timeout and/or send_timeout
with Pair0(listen=address) as s0, Pair0(dial=address) as s1:

s0.send(b'hello s1')
print(s1.recv()) # prints b'hello s1'
s1.send(b'hi old buddy s0, great to see ya')
print(s0.recv()) # prints b'hi old buddy s0, great to see ya

This demonstrates the asynchronous API using Trio. Remember that asyncio is also supported.

2.1. Pynng’s core functionality 7

https://github.com/codypiersall/pynng/tree/master/examples
https://gitter.im/nanomsg/nanomsg
https://nanomsg.github.io/nng/man/tip/nng_pair.7
https://trio.readthedocs.io
https://docs.python.org/3/library/asyncio.html#module-asyncio

pynng Documentation, Release 0.1.0

from trio import run
from pynng import Pair0

async def send_and_recv():
address = 'tcp://127.0.0.1:13131'
in real code you should also pass recv_timeout and/or send_timeout
with Pair0(listen=address) as s0, Pair0(dial=address) as s1:

await s0.asend(b'hello s1')
print(await s1.arecv()) # prints b'hello s1'
await s1.asend(b'hi old buddy s0, great to see ya')
print(await s0.arecv()) # prints b'hi old buddy s0, great to see ya

run(send_and_recv)

class pynng.Pair1(*, polyamorous=None, **kwargs)
A socket for bidrectional communication with potentially many partners. The Python version of nng_pair1.

It accepts the same keyword arguments as Socket and also has the same attributes. It also has one extra
keyword-only argument, polyamorous, which must be set to True to connect with more than one peer.

Note: If you want to connect to multiple peers you must pass polyamorous=True when you create your
socket.

To get the benefits of polyamory, you need to use the methods that work with Message objects: Socket.
recv_msg() and Socket.arecv_msg() for receiving, and Pipe.send() and Pipe.asend() for
sending.

Here is an example of the synchronous API, where a single listener connects to multiple peers. This is more
complex than the Pair0 case, because it requires to use the Pipe and Message interfaces.

from pynng import Pair1

address = 'tcp://127.0.0.1:12343'
with Pair1(listen=address, polyamorous=True) as s0, \

Pair1(dial=address, polyamorous=True) as s1, \
Pair1(dial=address, polyamorous=True) as s2:

s1.send(b'hello from s1')
s2.send(b'hello from s2')
msg1 = s0.recv_msg()
msg2 = s0.recv_msg()
print(msg1.bytes) # prints b'hello from s1'
print(msg2.bytes) # prints b'hello from s2'
msg1.pipe.send(b'hey s1')
msg2.pipe.send(b'hey s2')
print(s2.recv()) # prints b'hey s2'
print(s1.recv()) # prints b'hey s1'

And here is an example using the async API, using Trio.

from pynng import Pair1
import trio

async def polyamorous_send_and_recv():
address = 'tcp://127.0.0.1:12343'

(continues on next page)

8 Chapter 2. Getting Started

https://nanomsg.github.io/nng/man/tip/nng_pair.7
https://trio.readthedocs.io

pynng Documentation, Release 0.1.0

(continued from previous page)

with Pair1(listen=address, polyamorous=True) as s0, \
Pair1(dial=address, polyamorous=True) as s1, \
Pair1(dial=address, polyamorous=True) as s2:

await s1.asend(b'hello from s1')
await s2.asend(b'hello from s2')
msg1 = await s0.arecv_msg()
msg2 = await s0.arecv_msg()
print(msg1.bytes) # prints b'hello from s1'
print(msg2.bytes) # prints b'hello from s2'
await msg1.pipe.asend(b'hey s1')
await msg2.pipe.asend(b'hey s2')
print(await s2.arecv()) # prints b'hey s2'
print(await s1.arecv()) # prints b'hey s1'

trio.run(polyamorous_send_and_recv)

class pynng.Req0(*, resend_time=None, **kwargs)
A req0 socket.

The Python version of nng_req. It accepts the same keyword arguments as Socket and also has the
same attributes. It also has one extra keyword-argument: resend_time. resend_time corresponds to
NNG_OPT_REQ_RESENDTIME

A Req0 socket is paired with a Rep0 socket and together they implement normal request/response behavior.
the req socket send()s a request, the rep socket recv()s it, the rep socket send()s a response, and the
req socket recv()s it.

If a req socket attempts to do a recv() without first doing a send(), a pynng.BadState exception is
raised.

A Req0 socket supports opening multiple Contexts by calling new_context(). In this way a req socket
can have multiple outstanding requests to a single rep socket. Without opening a Context, the socket can only
have a single outstanding request at a time.

Here is an example demonstrating the request/response pattern.

from pynng import Req0, Rep0

address = 'tcp://127.0.0.1:13131'

with Rep0(listen=address) as rep, Req0(dial=address) as req:
req.send(b'random.random()')
question = rep.recv()
answer = b'4' # guaranteed to be random
rep.send(answer)
print(req.recv()) # prints b'4'

class pynng.Rep0(**kwargs)
A rep0 socket.

The Python version of nng_rep. It accepts the same keyword arguments as Socket and also has the same
attributes.

A Rep0 socket along with a Req0 socket implement the request/response pattern: the req socket send()s a
request, the rep socket recv()s it, the rep socket send()s a response, and the req socket recv()s it.

A Rep0 socket supports opening multiple Contexts by calling new_context(). In this way a rep socket
can service multiple requests at the same time. Without opening a Context, the rep socket can only service a
single request at a time.

2.1. Pynng’s core functionality 9

https://nanomsg.github.io/nng/man/tip/nng_req.7
https://nanomsg.github.io/nng/man/tip/nng_rep.7

pynng Documentation, Release 0.1.0

See the documentation for Req0 for an example.

class pynng.Pub0(**kwargs)
A pub0 socket.

The Python version of nng_pub. It accepts the same keyword arguments as Socket and also has the same
attributes. A Pub0 socket calls send(), the data is published to all connected subscribers.

Attempting to recv() with a Pub0 socket will raise a pynng.NotSupported exception.

See docs for Sub0 for an example.

class pynng.Sub0(**kwargs)
A sub0 socket.

The Python version of nng_sub. It accepts the same keyword arguments as Socket and also has the same
attributes. It also has one additional keyword argument: topics. If topics is given, it must be either a str,
bytes, or an iterable of str and bytes.

A subscriber must subscribe() to specific topics, and only messages that match the topic will be received.
A subscriber can subscribe to as many topics as you want it to.

A match is determined if the message starts with one of the subscribed topics. So if the subscribing socket is
subscribed to the topic b'hel', then the messages b'hel', b'help him and b'hello' would match,
but the message b'hexagon' would not. Subscribing to an empty string (b'') means that all messages will
match. If a sub socket is not subscribed to any topics, no messages will be receieved.

Note: pub/sub is a “best effort” transport; if you have a very high volume of messages be prepared for some
messages to be silently dropped.

Attempting to send() with a Sub0 socket will raise a pynng.NotSupported exception.

The following example demonstrates a basic usage of pub/sub:

import time
from pynng import Pub0, Sub0, Timeout

address = 'tcp://127.0.0.1:31313'
with Pub0(listen=address) as pub, \

Sub0(dial=address, recv_timeout=100) as sub0, \
Sub0(dial=address, recv_timeout=100) as sub1, \
Sub0(dial=address, recv_timeout=100) as sub2, \
Sub0(dial=address, recv_timeout=100) as sub3:

sub0.subscribe(b'wolf')
sub1.subscribe(b'puppy')
The empty string matches everything!
sub2.subscribe(b'')
sub3 is not subscribed to anything
make sure everyone is connected
time.sleep(0.05)

pub.send(b'puppy: that is a cute dog')
pub.send(b'wolf: that is a big dog')

print(sub0.recv()) # prints b'wolf...' since that is the matching message
print(sub1.recv()) # prints b'puppy...' since that is the matching message

sub2 will receive all messages (since empty string matches everything)

(continues on next page)

10 Chapter 2. Getting Started

https://nanomsg.github.io/nng/man/tip/nng_pub.7
https://nanomsg.github.io/nng/man/tip/nng_sub.7
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

pynng Documentation, Release 0.1.0

(continued from previous page)

print(sub2.recv()) # prints b'puppy...' since it was sent first
print(sub2.recv()) # prints b'wolf...' since it was sent second

try:
sub3.recv()
assert False, 'never gets here since sub3 is not subscribed'

except Timeout:
print('got a Timeout since sub3 had no subscriptions')

subscribe(topic)
Subscribe to the specified topic.

Topics are matched by looking at the first bytes of any received message.

Note: If you pass a str as the topic, it will be automatically encoded with str.encode(). If this
is not the desired behavior, just pass bytes in as the topic.

unsubscribe(topic)
Unsubscribe to the specified topic.

Note: If you pass a str as the topic, it will be automatically encoded with str.encode(). If this
is not the desired behavior, just pass bytes in as the topic.

class pynng.Push0(**kwargs)
A push0 socket.

The Python version of nng_push. It accepts the same keyword arguments as Socket and also has the same
attributes.

A Push0 socket is the pushing end of a data pipeline. Data sent from a push socket will be sent to a single
connected Pull0 socket. This can be useful for distributing work to multiple nodes, for example. Attempting
to call recv() on a Push0 socket will raise a pynng.NotSupported exception.

Here is an example of two Pull0 sockets connected to a Push0 socket.

import time

from pynng import Push0, Pull0, Timeout

addr = 'tcp://127.0.0.1:31313'
with Push0(listen=addr) as push, \

Pull0(dial=addr, recv_timeout=100) as pull0, \
Pull0(dial=addr, recv_timeout=100) as pull1:

pass
give some time to connect
time.sleep(0.01)
push.send(b'hi some node')
push.send(b'hi some other node')
print(pull0.recv()) # prints b'hi some node'
print(pull1.recv()) # prints b'hi some other node'

(continues on next page)

2.1. Pynng’s core functionality 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/stdtypes.html#bytes
https://nanomsg.github.io/nng/man/tip/nng_push.7

pynng Documentation, Release 0.1.0

(continued from previous page)

try:
pull0.recv()
assert False, "Cannot get here, since messages are sent round robin"

except Timeout:
pass

class pynng.Pull0(**kwargs)
A pull0 socket.

The Python version of nng_pull. It accepts the same keyword arguments as Socket and also has the same
attributes.

A Pull0 is the receiving end of a data pipeline. It needs to be paired with a Push0 socket. Attempting to
send() with a Pull0 socket will raise a pynng.NotSupported exception.

See Push0 for an example of push/pull in action.

class pynng.Surveyor0(**kwargs)
A surveyor0 socket.

The Python version of nng_surveyor. It accepts the same keyword arguments as Socket and also has the same
attributes. It has one additional attribute: survey_time. survey_time sets the amount of time a survey
lasts.

Surveyor0 sockets work with Respondent0 sockets in the survey pattern. In this pattern, a surveyor
sends a message, and gives all respondents a chance to chime in. The amount of time a survey is valid is
set by the attribute survey_time. survey_time is the time of a survey in milliseconds.

Here is an example:

from pynng import Surveyor0, Respondent0, Timeout

import time

address = 'tcp://127.0.0.1:13131'

with Surveyor0(listen=address) as surveyor, \
Respondent0(dial=address) as responder1, \
Respondent0(dial=address) as responder2:

give time for connections to happen
time.sleep(0.1)
surveyor.survey_time = 500
surveyor.send(b'who wants to party?')
usually these would be in another thread or process, ya know?
responder1.recv()
responder2.recv()
responder1.send(b'me me me!!!')
responder2.send(b'I need to sit this one out.')

accept responses until the survey is finished.
while True:

try:
response = surveyor.recv()
if response == b'me me me!!!':

print('all right, someone is ready to party!')
elif response == b'I need to sit this one out.':

(continues on next page)

12 Chapter 2. Getting Started

https://nanomsg.github.io/nng/man/tip/nng_pull.7
https://nanomsg.github.io/nng/man/tip/nng_surveyor.7

pynng Documentation, Release 0.1.0

(continued from previous page)

print('Too bad, someone is not ready to party.')
except Timeout:

print('survey is OVER! Time for bed.')
break

class pynng.Respondent0(**kwargs)
A respondent0 socket.

The Python version of nng_respondent. It accepts the same keyword arguments as Socket and also has the
same attributes. It accepts no additional arguments and has no other attributes

Surveyor0 sockets work with Respondent0 sockets in the survey pattern. In this pattern, a surveyor
sends a message, and gives all respondents a chance to chime in. The amount of time a survey is valid is
set by the attribute survey_time. survey_time is the time of a survey in milliseconds.

See Surveyor0 docs for an example.

class pynng.Bus0(**kwargs)
A bus0 socket. The Python version of nng_bus.

It accepts the same keyword arguments as Socket and also has the same attributes.

A Bus0 socket sends a message to all directly connected peers. This enables creating mesh networks. Note that
messages are only sent to directly connected peers. You must explicitly connect all nodes with the listen()
and corresponding listen() calls.

Here is a demonstration of using the bus protocol:

import time

from pynng import Bus0, Timeout

address = 'tcp://127.0.0.1:13131'
with Bus0(listen=address, recv_timeout=100) as s0, \

Bus0(dial=address, recv_timeout=100) as s1, \
Bus0(dial=address, recv_timeout=100) as s2:

let all connections be established
time.sleep(0.05)
s0.send(b'hello buddies')
s1.recv() # prints b'hello buddies'
s2.recv() # prints b'hello buddies'
s1.send(b'hi s0')
print(s0.recv()) # prints b'hi s0'
s2 is not directly connected to s1.
try:

s2.recv()
assert False, "this is never reached"

except Timeout:
print('s2 is not connected directly to s1!')

2.1.2 Pipe

class pynng.Pipe(...)
A “pipe” is a single connection between two endpoints. This is the Python version of nng_pipe.

2.1. Pynng’s core functionality 13

https://nanomsg.github.io/nng/man/tip/nng_respondent.7
https://nanomsg.github.io/nng/man/tip/nng_bus.7
https://nanomsg.github.io/nng/man/v1.1.0/nng_pipe.5

pynng Documentation, Release 0.1.0

There is no public constructor for a Pipe; they are automatically added to the underlying socket whenever the
pipe is created.

await asend(data)
Asynchronously send bytes from this Pipe.

send(data)
Synchronously send bytes from this Pipe. This method automatically creates a Message, associates
with this pipe, and sends it with this pipe’s associated Socket.

2.1.3 Context

class pynng.Context(...)
This is the Python version of nng_context. The way to create a Context is by calling Socket.
new_context(). Contexts are valid for Req0 and Rep0 sockets; other protocols do not support contexts.

Once you have a context, you just call send() and recv() or the async equivalents as you would on a socket.

A “context” keeps track of a protocol’s state for stateful protocols (like REQ/REP). A context allows the same
Socket to be used for multiple operations at the same time. For an example of the problem that contexts are
solving, see this snippet, which does not use contexts, and does terrible things:

start a socket to service requests.
HEY THIS IS EXAMPLE BAD CODE, SO DON'T TRY TO USE IT
in fact it's so bad it causes a panic in nng right now (2019/02/09):
see https://github.com/nanomsg/nng/issues/871
import pynng
import threading

def service_reqs(s):
while True:

data = s.recv()
s.send(b"I've got your response right here, pal!")

threads = []
with pynng.Rep0(listen='tcp://127.0.0.1:12345') as s:

for _ in range(10):
t = threading.Thread(target=service_reqs, args=[s], daemon=True)
t.start()
threads.append(t)

for thread in threads:
thread.join()

Contexts allow multiplexing a socket in a way that is safe. It removes one of the biggest use cases for needing
to use raw sockets.

Contexts cannot be instantiated directly; instead, create a Socket, and call the new_context() method.

await arecv()
Asynchronously receive data using this context.

await arecv_msg()
Asynchronously receive a Message on the context.

await asend(data)
Asynchronously send data using this context.

14 Chapter 2. Getting Started

https://nanomsg.github.io/nng/man/tip/nng_ctx.5.html

pynng Documentation, Release 0.1.0

close()
Close this context.

recv()
Synchronously receive data on this context.

recv_msg()
Synchronously receive a Message using this context.

send(data)
Synchronously send data on the context.

2.1.4 Message

class pynng.Message(data)
Python interface for nng_msg. Using the Message interface gives more control over aspects of sending the
message. In particular, you can tell which Pipe a message came from on receive, and you can direct which
Pipe a message will be sent from on send.

In normal usage, you would not create a Message directly. Instead you would receive a message using
Socket.recv_msg(), and send a message (implicitly) by using Pipe.send().

Since the main purpose of creating a Message is to send it using a specific Pipe, it is usually more convenient
to just use the Pipe.send() or Pipe.asend() method directly.

Messages in pynng are immutable; this is to prevent data corruption.

Warning: Access to the message’s underlying data buffer can be accessed with the _buffer attribute.
However, care must be taken not to send a message while a reference to the buffer is still alive; if the buffer
is used after a message is sent, a segfault or data corruption may (read: will) result.

2.1.5 Dialer

class pynng.Dialer(...)
The Python version of nng_dialer. A Dialer is returned whenever Socket.dial() is called. A list of
active dialers can be accessed via Socket.dialers.

A Dialer is associated with a single Socket. The associated socket can be accessed via the socket at-
tribute. There is no public constructor for creating a Dialer

close()
Close the dialer.

2.1.6 Listener

class pynng.Listener(...)
The Python version of nng_listener. A Listener is returned whenever Socket.listen() is called. A list
of active listeners can be accessed via Socket.listeners.

A Listener is associated with a single Socket. The associated socket can be accessed via the socket
attribute. There is no public constructor for creating a Listener.

close()
Close the listener.

2.1. Pynng’s core functionality 15

https://nanomsg.github.io/nng/man/tip/nng_msg.5.html
https://nanomsg.github.io/nng/man/tip/nng_dialer.5
https://nanomsg.github.io/nng/man/tip/nng_listener.5

pynng Documentation, Release 0.1.0

2.2 Exceptions in pynng

pynng translates all of NNG error codes into Python Exceptions. The root exception of the hierarchy is the
NNGException; NNGException inherits from Exception, and all other exceptions defined in this library inherit
from NNGException.

The following table describes all the exceptions defined by pynng. The first column is the name of the exception in
pynng (defined in pynng.exceptions), the second is the nng error code (defined in nng.h), and the third is a
description of the exception.

pynng Exception nng error code Description
Interrupted NNG_EINTR The call was interrupted; if this happens, Python may throw a KeyboardInterrupt. (I’m not sure if this is an exception you can even get with these bindings)
NoMemory NNG_ENOMEM Not enough memory to complete the operation.
InvalidOperation NNG_EINVAL An invalid operation was requested on the resource.
Busy NNG_EBUSY
Timeout NNG_ETIMEDOUT The operation timed out. Some operations cannot time out; an example that cannot time out is a send() on a Pub0 socket
ConnectionRefused NNG_ECONNREFUSED The remote socket refused a connection.
Closed NNG_ECLOSED The resource was already closed and cannot complete the requested operation.
TryAgain NNG_EAGAIN The requested operation would block, but non-blocking mode was requested.
NotSupported NNG_ENOTSUP The operation is not supported on the socket. For example, attempting to send on a Sub0 socket will raise this.
AddressInUse NNG_EADDRINUSE The requested address is already in use and cannot be bound to. This happens if multiple sockets attempt to listen() at the same address.
BadState NNG_ESTATE An operation was attempted in a bad state; for example, attempting to recv() twice in a row of a single Req0 socket.
NoEntry NNG_ENOENT The requested resource does not exist.
ProtocolError NNG_EPROTO
DestinationUnreachable NNG_EUNREACHABLE Could not reach the destination.
AddressInvalid NNG_EADDRINVAL An invalid address was specified. For example, attempting to listen on "tcp://127.0.0.1:-1" will throw.
PermissionDenied NNG_EPERM You did not have permission to do the requested operation.
MessageTooLarge NNG_EMSGSiZE
ConnectionReset NNG_ECONNRESET
ConnectionAborted NNG_ECONNABORTED
Canceled NNG_ECANCELED
OutOfFiles NNG_ENOFILES
OutOfSpace NNG_ENOSPC
AlreadyExists NNG_EEXIST
ReadOnly NNG_EREADONLY
WriteOnly NNG_EWRITEONLY
CryptoError NNG_ECRYPTO
AuthenticationError NNG_EPEERAUTH
NoArgument NNG_ENOARG
Ambiguous NNG_EAMBIGUOUS
BadType NNG_EBADTYPE
Internal NNG_EINTERNAL

16 Chapter 2. Getting Started

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

pynng Documentation, Release 0.1.0

18 Chapter 3. Indices and tables

Index

A
arecv() (pynng.Context method), 14
arecv() (pynng.Socket method), 6
arecv_msg() (pynng.Context method), 14
arecv_msg() (pynng.Socket method), 6
asend() (pynng.Context method), 14
asend() (pynng.Pipe method), 14
asend() (pynng.Socket method), 6

B
Bus0 (class in pynng), 13

C
close() (pynng.Context method), 14
close() (pynng.Dialer method), 15
close() (pynng.Listener method), 15
Context (class in pynng), 14

D
dial() (pynng.Socket method), 6
Dialer (class in pynng), 15

L
listen() (pynng.Socket method), 7
Listener (class in pynng), 15

M
Message (class in pynng), 15

N
new_context() (pynng.Socket method), 7

P
Pair0 (class in pynng), 7
Pair1 (class in pynng), 8
Pipe (class in pynng), 13
Pub0 (class in pynng), 10
Pull0 (class in pynng), 12

Push0 (class in pynng), 11

R
recv() (pynng.Context method), 15
recv() (pynng.Socket method), 7
recv_msg() (pynng.Context method), 15
recv_msg() (pynng.Socket method), 7
Rep0 (class in pynng), 9
Req0 (class in pynng), 9
Respondent0 (class in pynng), 13

S
send() (pynng.Context method), 15
send() (pynng.Pipe method), 14
send() (pynng.Socket method), 7
Socket (class in pynng), 5
Sub0 (class in pynng), 10
subscribe() (pynng.Sub0 method), 11
Surveyor0 (class in pynng), 12

U
unsubscribe() (pynng.Sub0 method), 11

19

	Installing pynng
	Getting Started
	Pynng’s core functionality
	Exceptions in pynng

	Indices and tables

