

This is Pynng’s Documentation.

pynng is Python bindings to Nanomsg Next Generation [https://github.com/nanomsg/nng] (nng). It provides a
nice Pythonic interface to the nng library. The goal is that pynng’s interface
feels natural enough to use that you don’t think of it as a wrapper, while
still exposing the power of the underlying library. It is installable with
pip on all major platforms (Linux, Windows, macOS). It has first class support
for Trio [https://trio.readthedocs.io] and asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio], in addition to being able to be used
synchronously.

nng is an
implementation of the Scalability Protocols [https://nanomsg.org]; it is the spiritual successor
to ZeroMQ [https://zeromq.org]. There are a couple of distributed systems problems that the
scalability protocols aim to solve:

	There are a few communication patterns that are implemented over and over
and over and over and over again. The wheel is continuously reinvented, but
no implementations are compatible with each other.

	Not only is the wheel continuosly reinvented, it is reinvented for every
combination of transport and protocol. A transport is how data gets
from one place to another; things like TCP/IP, HTTP, Unix sockets, carrier
pigeons. A protocol is the way that both sides have agreed to communicate
with each other (some protocols are ad-hoc, and some are more formal).

The scalability protocols are the basic tools you need to build a distributed
system. The following protocols are available:

	pair - simple one-to-one communication. (Pair0,
Pair1.)

	request/response - I ask, you answer. (Req0,
Rep0)

	pub/sub - subscribers are notified of topics they are interested in.
(Pub0, Sub0)

	pipeline, aka push/pull - load balancing.
(Push0, Pull0)

	survey - query the state of multiple applications.
(Surveyor0, Respondent0)

	bus - messages are sent to all connected sockets (Bus0)

The following transports are available:

	inproc: communication within a single process.

	ipc: communication across processes on a single machine.

	tcp: communication over networks via tcp.

	ws: communication over networks with websockets. (Probably only useful if
one end is on a browser.)

	tls+tcp: Encrypted TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security] communication over networks.

	carrier pigeons: communication via World War 1-style carrier pigeons [https://en.wikipedia.org/wiki/IP_over_Avian_Carriers].
The latency is pretty high on this one.

These protocols are language-agnostic, and implementations exist for many
languages [https://nanomsg.org/documentation.html#_language_bindings].

This library is available under the MIT License [https://github.com/codypiersall/pynng/blob/master/LICENSE.txt] and the source is available
on GitHub [https://github.com/codypiersall/pynng].

If you need two processes to talk to each other—either locally or remotely—you
should be using the scalability protocols. You never need to open another plain
socket [http://man7.org/linux/man-pages/man2/socket.2.html] again.

Okay, that was a little hyperbolic. But give pynng a chance; you might like
it.

Installing pynng

On Linux, Windows, and macOS, a quick

pip3 install pynng

should do the trick. pynng works on Python 3.5+.

Getting Started

	Pynng’s core functionality
	The Socket

	Pipe

	Context

	Message

	Dialer

	Listener

	TLSConfig

	Exceptions in pynng

Indices and tables

	Index

	Module Index

	Search Page

Pynng’s core functionality

At the heart of pynng is the pynng.Socket. It takes no positional
arguments, and all keyword arguments are optional. It is the Python version of
nng_socket [https://nanomsg.github.io/nng/man/tip/nng_socket.5.html].

The Socket

Note

You should never instantiate a pynng.Socket directly. Rather, you
should instantiate one of the subclasses.

	
class pynng.Socket(*, listen=None, dial=None, **kwargs)

	Open a socket with one of the scalability protocols. This should not be
instantiated directly; instead, one of its subclasses should be used.
There is one subclass per protocol. The available protocols are:

	Pair0

	Pair1

	Req0 / Rep0

	Pub0 / Sub0

	Push0 / Pull0

	Surveyor0 / Respondent0

	Bus0

The socket initializer receives no positional arguments. It accepts the
following keyword arguments, with the same meaning as the attributes described below: recv_timeout, send_timeout,
recv_buffer_size, send_buffer_size, reconnect_time_min,
reconnect_time_max, and name

To talk to another socket, you have to either dial()
its address, or listen() for connections. Then you can
send() to send data to the remote sockets or
recv() to receive data from the remote sockets.
Asynchronous versions are available as well, as asend()
and arecv(). The supported event loops are asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]
and Trio [https://trio.readthedocs.io]. You must ensure that you close() the socket
when you are finished with it. Sockets can also be used as a context
manager; this is the preferred way to use them when possible.

Sockets have the following attributes. Generally, you should set these
attributes before listen()-ing or
dial()-ing, or by passing them in as keyword arguments
when creating the Socket:

	recv_timeout (int): Receive timeout, in ms. If a socket takes longer
than the specified time, raises a pynng.exceptions.Timeout.
Corresponds to library option NNG_OPT_RECVTIMEO

	send_timeout (int): Send timeout, in ms. If the message cannot
be queued in the specified time, raises a pynng.exceptions.Timeout.
Corresponds to library option NNG_OPT_SENDTIMEO.

	recv_max_size (int): The largest size of a message to receive.
Messages larger than this size will be silently dropped. A size of 0
indicates unlimited size. The default size is 1 MB.

	recv_buffer_size (int): The number of messages that the socket
will buffer on receive. Corresponds to NNG_OPT_RECVBUF.

	send_buffer_size (int): The number of messages that the socket
will buffer on send. Corresponds to NNG_OPT_SENDBUF.

	name (str): The socket name. Corresponds to
NNG_OPT_SOCKNAME. This is useful for debugging purposes.

	raw (bool): A boolean, indicating whether the socket is raw or cooked.
Returns True if the socket is raw, else False. This property
is read-only. Corresponds to library option NNG_OPT_RAW. For
more information see nng’s documentation. [https://nanomsg.github.io/nng/man/v1.0.1/nng.7.html#raw_mode]
Note that currently, pynng does not support raw mode sockets, but
we intend to in the future [https://github.com/codypiersall/pynng/issues/35]:

	protocol (int): Read-only option which returns the 16-bit number
of the socket’s protocol.

	protocol_name (str): Read-only option which returns the name of the
socket’s protocol.

	peer (int): Returns the peer protocol id for the socket.

	local_address: The SockAddr representing
the local address. Corresponds to NNG_OPT_LOCADDR.

	reconnect_time_min (int): The minimum time to wait before
attempting reconnects, in ms. Corresponds to NNG_OPT_RECONNMINT.
This can also be overridden on the dialers.

	reconnect_time_max (int): The maximum time to wait before
attempting reconnects, in ms. Corresponds to NNG_OPT_RECONNMAXT.
If this is non-zero, then the time between successive connection
attempts will start at the value of reconnect_time_min, and grow
exponentially, until it reaches this value. This option can be set
on the socket, or on the dialers associated with the socket.

	recv_fd (int): The receive file descriptor associated with the
socket. This is suitable to be passed into poll functions like
select.poll() [https://docs.python.org/3/library/select.html#select.poll] or select.select() [https://docs.python.org/3/library/select.html#select.select]. That is the only thing
this file descriptor is good for; do not attempt to read from or
write to it. The file descriptor will be marked as readable
whenever it can receive data without blocking. Corresponds to
NNG_OPT_RECVFD.

	send_fd (int): The sending file descriptor associated with the
socket. This is suitable to be passed into poll functions like
select.poll() [https://docs.python.org/3/library/select.html#select.poll] or select.select() [https://docs.python.org/3/library/select.html#select.select]. That is the only thing
this file descriptor is good for; do not attempt to read from or
write to it. The file descriptor will be marked as readable
whenever it can send data without blocking. Corresponds to
NNG_OPT_SENDFD.

Note

When used in select.poll() [https://docs.python.org/3/library/select.html#select.poll] or select.select() [https://docs.python.org/3/library/select.html#select.select],
recv_fd and send_fd are both marked as readable when
they can receive or send data without blocking. So the upshot is
that for select.select() [https://docs.python.org/3/library/select.html#select.select] they should be passed in as the
rlist and for select.poll.register() [https://docs.python.org/3/library/select.html#select.poll.register] the eventmask
should be POLLIN.

	tls_config (TLSConfig): The TLS configuration for
this socket. This option is only valid if the socket is using the
TLS transport. See TLSConfig for information about
the TLS configuration. Corresponds to NNG_OPT_TLS_CONFIG. This
option is write-only.

	
await arecv()

	The asynchronous version of recv()

	
await arecv_msg()

	Asynchronously receive the Message msg on the socket.

	
await asend(data)

	Asynchronous version of send().

	
dial(address, *, block=None)

	Dial the specified address.

	Parameters

	
	address – The address to dial.

	block – Whether to block or not. There are three possible values
this can take:

	If True, a blocking dial is attempted. If it fails for
any reason, the dial fails and an exception is raised.

	If False, a non-blocking dial is started. The dial is
retried periodically in the background until it is
successful.

	(Default behavior): If None, a blocking dial is
first attempted. If it fails an exception is logged (using
the Python logging module), then a non-blocking dial is
done.

	
listen(address, flags=0)

	Listen at specified address.

listener and flags usually do not need to be given.

	
new_context()

	Return a new Context for this socket.

	
recv(block=True)

	Receive data on the socket. If the request times out the exception
pynng.Timeout is raised. If the socket cannot perform that
operation (e.g., a Pub0, which can only
send()), the exception pynng.NotSupported
is raised.

	Parameters

	block – If block is True (the default), the function will not return
until the operation is completed or times out. If block is False,
the function will return data immediately. If no data is ready on
the socket, the function will raise pynng.TryAgain.

	
recv_msg(block=True)

	Receive a Message on the socket.

	
send(data)

	Sends data (either bytes or bytearray) on socket.

Feel free to peruse the examples online [https://github.com/codypiersall/pynng/tree/master/examples], or ask in the
gitter channel [https://gitter.im/nanomsg/nanomsg].

Available Protocols

	
class pynng.Pair0(**kwargs)

	A socket for bidrectional, one-to-one communication, with a single
partner. The Python version of nng_pair0 [https://nanomsg.github.io/nng/man/tip/nng_pair.7].

This is the most basic type of socket.
It accepts the same keyword arguments as Socket and also has the
same attributes.

This demonstrates the synchronous API:

from pynng import Pair0
address = 'tcp://127.0.0.1:13131'
in real code you should also pass recv_timeout and/or send_timeout
with Pair0(listen=address) as s0, Pair0(dial=address) as s1:
 s0.send(b'hello s1')
 print(s1.recv()) # prints b'hello s1'
 s1.send(b'hi old buddy s0, great to see ya')
 print(s0.recv()) # prints b'hi old buddy s0, great to see ya

This demonstrates the asynchronous API using Trio [https://trio.readthedocs.io]. Remember that
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] is also supported.

from trio import run
from pynng import Pair0

async def send_and_recv():
 address = 'tcp://127.0.0.1:13131'
 # in real code you should also pass recv_timeout and/or send_timeout
 with Pair0(listen=address) as s0, Pair0(dial=address) as s1:
 await s0.asend(b'hello s1')
 print(await s1.arecv()) # prints b'hello s1'
 await s1.asend(b'hi old buddy s0, great to see ya')
 print(await s0.arecv()) # prints b'hi old buddy s0, great to see ya

run(send_and_recv)

	
class pynng.Pair1(*, polyamorous=None, **kwargs)

	A socket for bidrectional communication with potentially many partners.
The Python version of nng_pair1 [https://nanomsg.github.io/nng/man/tip/nng_pair.7].

It accepts the same keyword arguments as Socket and also has the
same attributes. It also has one extra
keyword-only argument, polyamorous, which must be set to True to
connect with more than one peer.

Note

If you want to connect to multiple peers you must pass
polyamorous=True when you create your socket.

To get the benefits of polyamory, you need to use the methods that work
with Message objects: Socket.recv_msg() and
Socket.arecv_msg() for receiving, and Pipe.send()
and Pipe.asend() for sending.

Here is an example of the synchronous API, where a single listener connects
to multiple peers. This is more complex than the Pair0 case,
because it requires to use the Pipe and Message
interfaces.

from pynng import Pair1

address = 'tcp://127.0.0.1:12343'
with Pair1(listen=address, polyamorous=True) as s0, \
 Pair1(dial=address, polyamorous=True) as s1, \
 Pair1(dial=address, polyamorous=True) as s2:
 s1.send(b'hello from s1')
 s2.send(b'hello from s2')
 msg1 = s0.recv_msg()
 msg2 = s0.recv_msg()
 print(msg1.bytes) # prints b'hello from s1'
 print(msg2.bytes) # prints b'hello from s2'
 msg1.pipe.send(b'hey s1')
 msg2.pipe.send(b'hey s2')
 print(s2.recv()) # prints b'hey s2'
 print(s1.recv()) # prints b'hey s1'

And here is an example using the async API, using Trio [https://trio.readthedocs.io].

from pynng import Pair1
import trio

async def polyamorous_send_and_recv():
 address = 'tcp://127.0.0.1:12343'
 with Pair1(listen=address, polyamorous=True) as s0, \
 Pair1(dial=address, polyamorous=True) as s1, \
 Pair1(dial=address, polyamorous=True) as s2:
 await s1.asend(b'hello from s1')
 await s2.asend(b'hello from s2')
 msg1 = await s0.arecv_msg()
 msg2 = await s0.arecv_msg()
 print(msg1.bytes) # prints b'hello from s1'
 print(msg2.bytes) # prints b'hello from s2'
 await msg1.pipe.asend(b'hey s1')
 await msg2.pipe.asend(b'hey s2')
 print(await s2.arecv()) # prints b'hey s2'
 print(await s1.arecv()) # prints b'hey s1'

trio.run(polyamorous_send_and_recv)

	
class pynng.Req0(*, resend_time=None, **kwargs)

	A req0 socket.

The Python version of nng_req [https://nanomsg.github.io/nng/man/tip/nng_req.7].
It accepts the same keyword arguments as Socket and also
has the same attributes. It also has one extra
keyword-argument: resend_time. resend_time corresponds to
NNG_OPT_REQ_RESENDTIME

A Req0 socket is paired with a Rep0 socket and together
they implement normal request/response behavior. the req socket
send()s a request, the rep socket recv()s it, the rep socket send()s a response,
and the req socket recv()s it.

If a req socket attempts to do a recv() without first doing a
send(), a pynng.BadState exception is raised.

A Req0 socket supports opening multiple Contexts by calling new_context(). In this way a req
socket can have multiple outstanding requests to a single rep socket.
Without opening a Context, the socket can only have a single
outstanding request at a time.

Here is an example demonstrating the request/response pattern.

from pynng import Req0, Rep0

address = 'tcp://127.0.0.1:13131'

with Rep0(listen=address) as rep, Req0(dial=address) as req:
 req.send(b'random.random()')
 question = rep.recv()
 answer = b'4' # guaranteed to be random
 rep.send(answer)
 print(req.recv()) # prints b'4'

	
class pynng.Rep0(**kwargs)

	A rep0 socket.

The Python version of nng_rep [https://nanomsg.github.io/nng/man/tip/nng_rep.7].
It accepts the same keyword arguments as Socket and also
has the same attributes.

A Rep0 socket along with a Req0 socket implement the
request/response pattern:
the req socket send()s a
request, the rep socket recv()s it, the rep socket
send()s a response, and the req socket recv()s it.

A Rep0 socket supports opening multiple Contexts by calling new_context(). In this way a rep
socket can service multiple requests at the same time. Without opening a
Context, the rep socket can only service a single request at a
time.

See the documentation for Req0 for an example.

	
class pynng.Pub0(**kwargs)

	A pub0 socket.

The Python version of nng_pub [https://nanomsg.github.io/nng/man/tip/nng_pub.7].
It accepts the same keyword arguments as Socket and also has the
same attributes. A Pub0 socket calls
send(), the data is published to all connected
subscribers.

Attempting to recv() with a Pub0 socket will raise a
pynng.NotSupported exception.

See docs for Sub0 for an example.

	
class pynng.Sub0(**kwargs)

	A sub0 socket.

The Python version of nng_sub [https://nanomsg.github.io/nng/man/tip/nng_sub.7].
It accepts the same keyword arguments as Socket and also
has the same attributes. It also has one
additional keyword argument: topics. If topics is given, it must
be either a str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or an iterable of str and bytes.

A subscriber must subscribe() to specific topics, and only
messages that match the topic will be received. A subscriber can subscribe
to as many topics as you want it to.

A match is determined if the message starts with one of the subscribed
topics. So if the subscribing socket is subscribed to the topic
b'hel', then the messages b'hel', b'help him and b'hello'
would match, but the message b'hexagon' would not. Subscribing to an
empty string (b'') means that all messages will match. If a sub socket
is not subscribed to any topics, no messages will be receieved.

Note

pub/sub is a “best effort” transport; if you have a very high volume of
messages be prepared for some messages to be silently dropped.

Attempting to send() with a Sub0 socket will raise a
pynng.NotSupported exception.

The following example demonstrates a basic usage of pub/sub:

import time
from pynng import Pub0, Sub0, Timeout

address = 'tcp://127.0.0.1:31313'
with Pub0(listen=address) as pub, \
 Sub0(dial=address, recv_timeout=100) as sub0, \
 Sub0(dial=address, recv_timeout=100) as sub1, \
 Sub0(dial=address, recv_timeout=100) as sub2, \
 Sub0(dial=address, recv_timeout=100) as sub3:

 sub0.subscribe(b'wolf')
 sub1.subscribe(b'puppy')
 # The empty string matches everything!
 sub2.subscribe(b'')
 # we're going to send two messages before receiving anything, and this is
 # the only socket that needs to receive both messages.
 sub2.recv_buffer_size = 2
 # sub3 is not subscribed to anything
 # make sure everyone is connected
 time.sleep(0.05)

 pub.send(b'puppy: that is a cute dog')
 pub.send(b'wolf: that is a big dog')

 print(sub0.recv()) # prints b'wolf...' since that is the matching message
 print(sub1.recv()) # prints b'puppy...' since that is the matching message

 # sub2 will receive all messages (since empty string matches everything)
 print(sub2.recv()) # prints b'puppy...' since it was sent first
 print(sub2.recv()) # prints b'wolf...' since it was sent second

 try:
 sub3.recv()
 assert False, 'never gets here since sub3 is not subscribed'
 except Timeout:
 print('got a Timeout since sub3 had no subscriptions')

	
subscribe(topic)

	Subscribe to the specified topic.

Topics are matched by looking at the first bytes of any received
message.

Note

If you pass a str [https://docs.python.org/3/library/stdtypes.html#str] as the topic, it will be
automatically encoded with str.encode() [https://docs.python.org/3/library/stdtypes.html#str.encode]. If this is not the
desired behavior, just pass bytes [https://docs.python.org/3/library/stdtypes.html#bytes] in as the topic.

	
unsubscribe(topic)

	Unsubscribe to the specified topic.

Note

If you pass a str [https://docs.python.org/3/library/stdtypes.html#str] as the topic, it will be
automatically encoded with str.encode() [https://docs.python.org/3/library/stdtypes.html#str.encode]. If this is not the
desired behavior, just pass bytes [https://docs.python.org/3/library/stdtypes.html#bytes] in as the topic.

	
class pynng.Push0(**kwargs)

	A push0 socket.

The Python version of nng_push [https://nanomsg.github.io/nng/man/tip/nng_push.7].
It accepts the same keyword arguments as Socket and also
has the same attributes.

A Push0 socket is the pushing end of a data pipeline. Data sent
from a push socket will be sent to a single connected Pull0
socket. This can be useful for distributing work to multiple nodes, for
example. Attempting to call recv() on a Push0 socket
will raise a pynng.NotSupported exception.

Here is an example of two Pull0 sockets connected to a
Push0 socket.

import time

from pynng import Push0, Pull0, Timeout

addr = 'tcp://127.0.0.1:31313'
with Push0(listen=addr) as push, \
 Pull0(dial=addr, recv_timeout=100) as pull0, \
 Pull0(dial=addr, recv_timeout=100) as pull1:
 pass
 # give some time to connect
 time.sleep(0.01)
 push.send(b'hi some node')
 push.send(b'hi some other node')
 print(pull0.recv()) # prints b'hi some node'
 print(pull1.recv()) # prints b'hi some other node'
 try:
 pull0.recv()
 assert False, "Cannot get here, since messages are sent round robin"
 except Timeout:
 pass

	
class pynng.Pull0(**kwargs)

	A pull0 socket.

The Python version of nng_pull [https://nanomsg.github.io/nng/man/tip/nng_pull.7].
It accepts the same keyword arguments as Socket and also
has the same attributes.

A Pull0 is the receiving end of a data pipeline. It needs to be
paired with a Push0 socket.
Attempting to send()
with a Pull0 socket will raise a pynng.NotSupported exception.

See Push0 for an example of push/pull in action.

	
class pynng.Surveyor0(**kwargs)

	A surveyor0 socket.

The Python version of nng_surveyor [https://nanomsg.github.io/nng/man/tip/nng_surveyor.7].
It accepts the same keyword arguments as Socket and also
has the same attributes. It has one additional
attribute: survey_time. survey_time sets the amount of time a
survey lasts.

Surveyor0 sockets work with Respondent0 sockets in the
survey pattern. In this pattern, a surveyor sends a
message, and gives all respondents a chance to
chime in. The amount of time a survey is valid is set by the attribute
survey_time. survey_time is the time of a survey in milliseconds.

Here is an example:

from pynng import Surveyor0, Respondent0, Timeout

import time

address = 'tcp://127.0.0.1:13131'

with Surveyor0(listen=address) as surveyor, \
 Respondent0(dial=address) as responder1, \
 Respondent0(dial=address) as responder2:
 # give time for connections to happen
 time.sleep(0.1)
 surveyor.survey_time = 500
 surveyor.send(b'who wants to party?')
 # usually these would be in another thread or process, ya know?
 responder1.recv()
 responder2.recv()
 responder1.send(b'me me me!!!')
 responder2.send(b'I need to sit this one out.')

 # accept responses until the survey is finished.
 while True:
 try:
 response = surveyor.recv()
 if response == b'me me me!!!':
 print('all right, someone is ready to party!')
 elif response == b'I need to sit this one out.':
 print('Too bad, someone is not ready to party.')
 except Timeout:
 print('survey is OVER! Time for bed.')
 break

	
class pynng.Respondent0(**kwargs)

	A respondent0 socket.

The Python version of nng_respondent [https://nanomsg.github.io/nng/man/tip/nng_respondent.7].
It accepts the same keyword arguments as Socket and also
has the same attributes. It accepts no
additional arguments and has no other attributes

Surveyor0 sockets work with Respondent0 sockets in the
survey pattern. In this pattern, a surveyor sends a
message, and gives all respondents a chance to
chime in. The amount of time a survey is valid is set by the attribute
survey_time. survey_time is the time of a survey in milliseconds.

See Surveyor0 docs for an example.

	
class pynng.Bus0(**kwargs)

	A bus0 socket. The Python version of nng_bus [https://nanomsg.github.io/nng/man/tip/nng_bus.7].

It accepts the same keyword arguments as Socket and also has the
same attributes.

A Bus0 socket sends a message to all directly connected peers.
This enables creating mesh networks. Note that messages are only sent to
directly connected peers. You must explicitly connect all nodes with the
listen() and corresponding listen() calls.

Here is a demonstration of using the bus protocol:

import time

from pynng import Bus0, Timeout

address = 'tcp://127.0.0.1:13131'
with Bus0(listen=address, recv_timeout=100) as s0, \
 Bus0(dial=address, recv_timeout=100) as s1, \
 Bus0(dial=address, recv_timeout=100) as s2:
 # let all connections be established
 time.sleep(0.05)
 s0.send(b'hello buddies')
 s1.recv() # prints b'hello buddies'
 s2.recv() # prints b'hello buddies'
 s1.send(b'hi s0')
 print(s0.recv()) # prints b'hi s0'
 # s2 is not directly connected to s1.
 try:
 s2.recv()
 assert False, "this is never reached"
 except Timeout:
 print('s2 is not connected directly to s1!')

Pipe

	
class pynng.Pipe(...)

	A “pipe” is a single connection between two endpoints. This is the Python
version of nng_pipe [https://nanomsg.github.io/nng/man/v1.1.0/nng_pipe.5].

There is no public constructor for a Pipe; they are automatically added to
the underlying socket whenever the pipe is created.

	
await asend(data)

	Asynchronously send bytes from this Pipe.

	
send(data)

	Synchronously send bytes from this Pipe. This method
automatically creates a Message, associates with this pipe,
and sends it with this pipe’s associated Socket.

Context

	
class pynng.Context(...)

	This is the Python version of nng_context [https://nanomsg.github.io/nng/man/tip/nng_ctx.5.html]. The way to
create a Context is by calling Socket.new_context().
Contexts are valid for Req0 and Rep0 sockets; other
protocols do not support contexts.

Once you have a context, you just call send() and
recv() or the async equivalents as you would on a socket.

A “context” keeps track of a protocol’s state for stateful protocols (like
REQ/REP). A context allows the same Socket to be used for
multiple operations at the same time. For an example of the problem that
contexts are solving, see this snippet, which does not use contexts,
and does terrible things:

start a socket to service requests.
HEY THIS IS EXAMPLE BAD CODE, SO DON'T TRY TO USE IT
in fact it's so bad it causes a panic in nng right now (2019/02/09):
see https://github.com/nanomsg/nng/issues/871
import pynng
import threading

def service_reqs(s):
 while True:
 data = s.recv()
 s.send(b"I've got your response right here, pal!")

threads = []
with pynng.Rep0(listen='tcp://127.0.0.1:12345') as s:
 for _ in range(10):
 t = threading.Thread(target=service_reqs, args=[s], daemon=True)
 t.start()
 threads.append(t)

 for thread in threads:
 thread.join()

Contexts allow multiplexing a socket in a way that is safe. It removes one
of the biggest use cases for needing to use raw sockets.

Contexts cannot be instantiated directly; instead, create a
Socket, and call the new_context() method.

	
await arecv()

	Asynchronously receive data using this context.

	
await arecv_msg()

	Asynchronously receive a Message on the context.

	
await asend(data)

	Asynchronously send data using this context.

	
close()

	Close this context.

	
recv()

	Synchronously receive data on this context.

	
recv_msg()

	Synchronously receive a Message using this context.

	
send(data)

	Synchronously send data on the context.

Message

	
class pynng.Message(data)

	Python interface for nng_msg [https://nanomsg.github.io/nng/man/tip/nng_msg.5.html]. Using the
Message interface gives more control over aspects of
sending the message. In particular, you can tell which
Pipe a message came from on receive, and you can direct
which Pipe a message will be sent from on send.

In normal usage, you would not create a Message directly. Instead
you would receive a message using Socket.recv_msg(), and send a
message (implicitly) by using Pipe.send().

Since the main purpose of creating a Message is to send it using a
specific Pipe, it is usually more convenient to just use the
Pipe.send() or Pipe.asend() method directly.

Messages in pynng are immutable; this is to prevent data corruption.

Warning

Access to the message’s underlying data buffer can be accessed with the
_buffer attribute. However, care must be taken not to send a message
while a reference to the buffer is still alive; if the buffer is used after
a message is sent, a segfault or data corruption may (read: will)
result.

Dialer

	
class pynng.Dialer(...)

	The Python version of nng_dialer [https://nanomsg.github.io/nng/man/tip/nng_dialer.5]. A
Dialer is returned whenever Socket.dial() is called. A list
of active dialers can be accessed via Socket.dialers.

A Dialer is associated with a single Socket. The
associated socket can be accessed via the socket attribute. There is
no public constructor for creating a Dialer

	
close()

	Close the dialer.

Listener

	
class pynng.Listener(...)

	The Python version of nng_listener [https://nanomsg.github.io/nng/man/tip/nng_listener.5]. A
Listener is returned whenever Socket.listen() is called. A
list of active listeners can be accessed via Socket.listeners.

A Listener is associated with a single Socket. The
associated socket can be accessed via the socket attribute. There is
no public constructor for creating a Listener.

	
close()

	Close the listener.

TLSConfig

Sockets can make use of the TLS transport on top of TCP by specifying an
address similar to how tcp is specified. The following are examples of valid
TLS addresses:

	"tls+tcp:127.0.0.1:1313", listening on TCP port 1313 on localhost.

	"tls+tcp4:127.0.0.1:1313", explicitly requesting IPv4 for TCP port 1313
on localhost.

	"tls+tcp6://[::1]:4433", explicitly requesting IPv6 for IPv6 localhost on
port 4433.

	
class pynng.TLSConfig(...)

	TLS Configuration object. This object is used to configure sockets that
are using the TLS transport.

	Parameters

	
	mode – Must be TLSConfig.MODE_CLIENT or TLSConfig.MODE_SERVER.
Corresponds to nng’s mode argument in nng_tls_config_alloc.

	server_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – When configuring a client, server_name is used
to compare the identity of the server’s certificate. Corresponds
to nng_tls_config_server_name.

	ca_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – Set certificate authority with a string. Corresponds
to nng_tls_config_ca_chain

	own_key_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – When passed with own_cert_string, is used to
set own certificate. Corresponds to nng_tls_config_own_cert.

	own_cert_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – When passed with own_key_string, is used to
set own certificate. Corresponds to nng_tls_config_own_cert.

	auth_mode – Set the authentication mode of the connection. Corresponds
to nng_tls_config_auth_mode.

	ca_files (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – ca files to use for the TLS connection.
Corresponds to nng_tls_config_ca_file.

	cert_key_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Corresponds to nng_tls_config_cert_key_file.

	passwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – Password used for configuring certificates.

Check the TLS tests [https://github.com/codypiersall/pynng/blob/master/test/test_api.py] for
usage examples.

Exceptions in pynng

pynng translates all of NNG error codes into Python Exceptions. The root
exception of the hierarchy is the NNGException; NNGException inherits
from Exception, and all other exceptions defined in this library inherit from
NNGException.

The following table describes all the exceptions defined by pynng. The first
column is the name of the exception in pynng (defined in pynng.exceptions),
the second is the nng error code (defined in nng.h), and the third is a
description of the exception.

	pynng Exception

	nng error code

	Description

	Interrupted

	NNG_EINTR

	The call was interrupted; if this happens,
Python may throw a KeyboardInterrupt. (I’m not
sure if this is an exception you can even get
with these bindings)

	NoMemory

	NNG_ENOMEM

	Not enough memory to complete the operation.

	InvalidOperation

	NNG_EINVAL

	An invalid operation was requested on the
resource.

	Busy

	NNG_EBUSY

	

	Timeout

	NNG_ETIMEDOUT

	The operation timed out. Some operations
cannot time out; an example that cannot time
out is a send() on a Pub0 socket

	ConnectionRefused

	NNG_ECONNREFUSED

	The remote socket refused a connection.

	Closed

	NNG_ECLOSED

	The resource was already closed and cannot
complete the requested operation.

	TryAgain

	NNG_EAGAIN

	The requested operation would block, but
non-blocking mode was requested.

	NotSupported

	NNG_ENOTSUP

	The operation is not supported on the socket.
For example, attempting to send on a
Sub0 socket will raise this.

	AddressInUse

	NNG_EADDRINUSE

	The requested address is already in use and
cannot be bound to. This happens if multiple
sockets attempt to listen() at the same
address.

	BadState

	NNG_ESTATE

	An operation was attempted in a bad state; for
example, attempting to recv() twice in a
row of a single Req0 socket.

	NoEntry

	NNG_ENOENT

	The requested resource does not exist.

	ProtocolError

	NNG_EPROTO

	

	DestinationUnreachable

	NNG_EUNREACHABLE

	Could not reach the destination.

	AddressInvalid

	NNG_EADDRINVAL

	An invalid address was specified. For example,
attempting to listen on "tcp://127.0.0.1:-1"
will throw.

	PermissionDenied

	NNG_EPERM

	You did not have permission to do the requested
operation.

	MessageTooLarge

	NNG_EMSGSiZE

	

	ConnectionReset

	NNG_ECONNRESET

	

	ConnectionAborted

	NNG_ECONNABORTED

	

	Canceled

	NNG_ECANCELED

	

	OutOfFiles

	NNG_ENOFILES

	

	OutOfSpace

	NNG_ENOSPC

	

	AlreadyExists

	NNG_EEXIST

	

	ReadOnly

	NNG_EREADONLY

	

	WriteOnly

	NNG_EWRITEONLY

	

	CryptoError

	NNG_ECRYPTO

	

	AuthenticationError

	NNG_EPEERAUTH

	

	NoArgument

	NNG_ENOARG

	

	Ambiguous

	NNG_EAMBIGUOUS

	

	BadType

	NNG_EBADTYPE

	

	Internal

	NNG_EINTERNAL

	

Index

 A
 | B
 | C
 | D
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	arecv() (pynng.Context method)

 	(pynng.Socket method)

 	arecv_msg() (pynng.Context method)

 	(pynng.Socket method)

 	
 	asend() (pynng.Context method)

 	(pynng.Pipe method)

 	(pynng.Socket method)

B

 	
 	Bus0 (class in pynng)

C

 	
 	close() (pynng.Context method)

 	(pynng.Dialer method)

 	(pynng.Listener method)

 	
 	Context (class in pynng)

D

 	
 	dial() (pynng.Socket method)

 	
 	Dialer (class in pynng)

L

 	
 	listen() (pynng.Socket method)

 	
 	Listener (class in pynng)

M

 	
 	Message (class in pynng)

N

 	
 	new_context() (pynng.Socket method)

P

 	
 	Pair0 (class in pynng)

 	Pair1 (class in pynng)

 	Pipe (class in pynng)

 	
 	Pub0 (class in pynng)

 	Pull0 (class in pynng)

 	Push0 (class in pynng)

R

 	
 	recv() (pynng.Context method)

 	(pynng.Socket method)

 	recv_msg() (pynng.Context method)

 	(pynng.Socket method)

 	
 	Rep0 (class in pynng)

 	Req0 (class in pynng)

 	Respondent0 (class in pynng)

S

 	
 	send() (pynng.Context method)

 	(pynng.Pipe method)

 	(pynng.Socket method)

 	
 	Socket (class in pynng)

 	Sub0 (class in pynng)

 	subscribe() (pynng.Sub0 method)

 	Surveyor0 (class in pynng)

T

 	
 	TLSConfig (class in pynng)

U

 	
 	unsubscribe() (pynng.Sub0 method)

 nav.xhtml

 Table of Contents

 		
 This is Pynng’s Documentation.

 		
 Pynng’s core functionality

 		
 The Socket

 		
 Available Protocols

 		
 Pipe

 		
 Context

 		
 Message

 		
 Dialer

 		
 Listener

 		
 TLSConfig

 		
 Exceptions in pynng

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

